Copied to
clipboard

G = C2×C339D4order 432 = 24·33

Direct product of C2 and C339D4

direct product, metabelian, supersoluble, monomial

Aliases: C2×C339D4, C62.97D6, (C3×C6)⋊6D12, (C32×C6)⋊9D4, C3327(C2×D4), C3⋊Dic322D6, C63(C3⋊D12), C61(D6⋊S3), C3211(C2×D12), (C3×C62).35C22, (C32×C6).72C23, C22.6(C324D6), (C2×C6).64S32, C6.101(C2×S32), (C2×C3⋊S3)⋊22D6, C32(C2×D6⋊S3), C34(C2×C3⋊D12), (C3×C6)⋊8(C3⋊D4), (C6×C3⋊Dic3)⋊9C2, (C6×C3⋊S3)⋊19C22, (C22×C3⋊S3)⋊11S3, (C2×C3⋊Dic3)⋊14S3, C3214(C2×C3⋊D4), C2.8(C2×C324D6), (C3×C6).122(C22×S3), (C3×C3⋊Dic3)⋊16C22, (C2×C6×C3⋊S3)⋊6C2, SmallGroup(432,694)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C2×C339D4
C1C3C32C33C32×C6C6×C3⋊S3C339D4 — C2×C339D4
C33C32×C6 — C2×C339D4
C1C22

Generators and relations for C2×C339D4
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, cd=dc, ece-1=c-1, cf=fc, ede-1=fdf=d-1, fef=e-1 >

Subgroups: 1560 in 306 conjugacy classes, 63 normal (15 characteristic)
C1, C2, C2, C2, C3, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C32, C32, C32, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C33, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C62, C2×D12, C2×C3⋊D4, C3×C3⋊S3, C32×C6, C32×C6, D6⋊S3, C3⋊D12, C6×Dic3, C2×C3⋊Dic3, S3×C2×C6, C22×C3⋊S3, C3×C3⋊Dic3, C6×C3⋊S3, C6×C3⋊S3, C3×C62, C2×D6⋊S3, C2×C3⋊D12, C339D4, C6×C3⋊Dic3, C2×C6×C3⋊S3, C2×C339D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C3⋊D4, C22×S3, S32, C2×D12, C2×C3⋊D4, D6⋊S3, C3⋊D12, C2×S32, C324D6, C2×D6⋊S3, C2×C3⋊D12, C339D4, C2×C324D6, C2×C339D4

Smallest permutation representation of C2×C339D4
On 48 points
Generators in S48
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 40)(18 37)(19 38)(20 39)(21 43)(22 44)(23 41)(24 42)(25 48)(26 45)(27 46)(28 47)(29 34)(30 35)(31 36)(32 33)
(1 44 45)(2 41 46)(3 42 47)(4 43 48)(5 22 26)(6 23 27)(7 24 28)(8 21 25)(9 32 37)(10 29 38)(11 30 39)(12 31 40)(13 33 18)(14 34 19)(15 35 20)(16 36 17)
(1 45 44)(2 41 46)(3 47 42)(4 43 48)(5 26 22)(6 23 27)(7 28 24)(8 21 25)(9 37 32)(10 29 38)(11 39 30)(12 31 40)(13 18 33)(14 34 19)(15 20 35)(16 36 17)
(1 44 45)(2 46 41)(3 42 47)(4 48 43)(5 22 26)(6 27 23)(7 24 28)(8 25 21)(9 37 32)(10 29 38)(11 39 30)(12 31 40)(13 18 33)(14 34 19)(15 20 35)(16 36 17)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 34)(2 33)(3 36)(4 35)(5 29)(6 32)(7 31)(8 30)(9 23)(10 22)(11 21)(12 24)(13 41)(14 44)(15 43)(16 42)(17 47)(18 46)(19 45)(20 48)(25 39)(26 38)(27 37)(28 40)

G:=sub<Sym(48)| (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,40)(18,37)(19,38)(20,39)(21,43)(22,44)(23,41)(24,42)(25,48)(26,45)(27,46)(28,47)(29,34)(30,35)(31,36)(32,33), (1,44,45)(2,41,46)(3,42,47)(4,43,48)(5,22,26)(6,23,27)(7,24,28)(8,21,25)(9,32,37)(10,29,38)(11,30,39)(12,31,40)(13,33,18)(14,34,19)(15,35,20)(16,36,17), (1,45,44)(2,41,46)(3,47,42)(4,43,48)(5,26,22)(6,23,27)(7,28,24)(8,21,25)(9,37,32)(10,29,38)(11,39,30)(12,31,40)(13,18,33)(14,34,19)(15,20,35)(16,36,17), (1,44,45)(2,46,41)(3,42,47)(4,48,43)(5,22,26)(6,27,23)(7,24,28)(8,25,21)(9,37,32)(10,29,38)(11,39,30)(12,31,40)(13,18,33)(14,34,19)(15,20,35)(16,36,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,34)(2,33)(3,36)(4,35)(5,29)(6,32)(7,31)(8,30)(9,23)(10,22)(11,21)(12,24)(13,41)(14,44)(15,43)(16,42)(17,47)(18,46)(19,45)(20,48)(25,39)(26,38)(27,37)(28,40)>;

G:=Group( (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,40)(18,37)(19,38)(20,39)(21,43)(22,44)(23,41)(24,42)(25,48)(26,45)(27,46)(28,47)(29,34)(30,35)(31,36)(32,33), (1,44,45)(2,41,46)(3,42,47)(4,43,48)(5,22,26)(6,23,27)(7,24,28)(8,21,25)(9,32,37)(10,29,38)(11,30,39)(12,31,40)(13,33,18)(14,34,19)(15,35,20)(16,36,17), (1,45,44)(2,41,46)(3,47,42)(4,43,48)(5,26,22)(6,23,27)(7,28,24)(8,21,25)(9,37,32)(10,29,38)(11,39,30)(12,31,40)(13,18,33)(14,34,19)(15,20,35)(16,36,17), (1,44,45)(2,46,41)(3,42,47)(4,48,43)(5,22,26)(6,27,23)(7,24,28)(8,25,21)(9,37,32)(10,29,38)(11,39,30)(12,31,40)(13,18,33)(14,34,19)(15,20,35)(16,36,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,34)(2,33)(3,36)(4,35)(5,29)(6,32)(7,31)(8,30)(9,23)(10,22)(11,21)(12,24)(13,41)(14,44)(15,43)(16,42)(17,47)(18,46)(19,45)(20,48)(25,39)(26,38)(27,37)(28,40) );

G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,40),(18,37),(19,38),(20,39),(21,43),(22,44),(23,41),(24,42),(25,48),(26,45),(27,46),(28,47),(29,34),(30,35),(31,36),(32,33)], [(1,44,45),(2,41,46),(3,42,47),(4,43,48),(5,22,26),(6,23,27),(7,24,28),(8,21,25),(9,32,37),(10,29,38),(11,30,39),(12,31,40),(13,33,18),(14,34,19),(15,35,20),(16,36,17)], [(1,45,44),(2,41,46),(3,47,42),(4,43,48),(5,26,22),(6,23,27),(7,28,24),(8,21,25),(9,37,32),(10,29,38),(11,39,30),(12,31,40),(13,18,33),(14,34,19),(15,20,35),(16,36,17)], [(1,44,45),(2,46,41),(3,42,47),(4,48,43),(5,22,26),(6,27,23),(7,24,28),(8,25,21),(9,37,32),(10,29,38),(11,39,30),(12,31,40),(13,18,33),(14,34,19),(15,20,35),(16,36,17)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,34),(2,33),(3,36),(4,35),(5,29),(6,32),(7,31),(8,30),(9,23),(10,22),(11,21),(12,24),(13,41),(14,44),(15,43),(16,42),(17,47),(18,46),(19,45),(20,48),(25,39),(26,38),(27,37),(28,40)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D···3H4A4B6A···6I6J···6X6Y···6AF12A12B12C12D
order122222223333···3446···66···66···612121212
size1111181818182224···418182···24···418···1818181818

54 irreducible representations

dim1111222222224444444
type++++++++++++-++
imageC1C2C2C2S3S3D4D6D6D6D12C3⋊D4S32D6⋊S3C3⋊D12C2×S32C324D6C339D4C2×C324D6
kernelC2×C339D4C339D4C6×C3⋊Dic3C2×C6×C3⋊S3C2×C3⋊Dic3C22×C3⋊S3C32×C6C3⋊Dic3C2×C3⋊S3C62C3×C6C3×C6C2×C6C6C6C6C22C2C2
# reps1412122243483243242

Matrix representation of C2×C339D4 in GL6(𝔽13)

1200000
0120000
0012000
0001200
0000120
0000012
,
100000
010000
0001200
0011200
000010
000001
,
010000
12120000
001000
000100
000010
000001
,
100000
010000
001000
000100
0000121
0000120
,
100000
12120000
001000
000100
0000411
000029
,
100000
010000
000100
001000
0000012
0000120

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,2,0,0,0,0,11,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0] >;

C2×C339D4 in GAP, Magma, Sage, TeX

C_2\times C_3^3\rtimes_9D_4
% in TeX

G:=Group("C2xC3^3:9D4");
// GroupNames label

G:=SmallGroup(432,694);
// by ID

G=gap.SmallGroup(432,694);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,c*d=d*c,e*c*e^-1=c^-1,c*f=f*c,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽